Novel compounds targeting the enterohemorrhagic Escherichia coli type three secretion system reveal insights into mechanisms of secretion inhibition

نویسندگان

  • Riccardo Zambelloni
  • James P R Connolly
  • Alejandro Huerta Uribe
  • Karl Burgess
  • Rodolfo Marquez
  • Andrew J Roe
چکیده

Anti-virulence (AV) compounds are a promising alternative to traditional antibiotics for fighting bacterial infections. The Type Three Secretion System (T3SS) is a well-studied and attractive AV target, given that it is widespread in more than 25 species of Gram-negative bacteria, including enterohemorrhagic E. coli (EHEC), and as it is essential for host colonization by many pathogens. In this work, we designed, synthesized and tested a new series of compounds that block the functionality of the T3SS of EHEC. Affinity chromatography experiments identified the primary target of the compounds as the T3SS needle pore protein EspD, which is essential for effector protein translocation into host cells. These data were supported by mechanistic studies that determined the coiled-coil domain 1 of EspD as a key compound-binding site, thereby preventing correct assembly of the T3SS complex on the cell surface. However, binding of inhibitors to EspD or deletion of EspD itself did not result in transcriptional down-regulation of effector proteins. Instead, we found the compounds to exhibit dual-functionality by also down-regulating transcription of the entire chromosomal locus encoding the T3SS, further demonstrating their desirability and effectiveness.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dissecting virulence: systematic and functional analyses of a pathogenicity island.

Bacterial pathogenicity islands (PAI) often encode both effector molecules responsible for disease and secretion systems that deliver these effectors to host cells. Human enterohemorrhagic Escherichia coli (EHEC), enteropathogenic E. coli, and the mouse pathogen Citrobacter rodentium (CR) possess the locus of enterocyte effacement (LEE) PAI. We systematically mutagenized all 41 CR LEE genes and...

متن کامل

Antibacterial effects of aqueous and alcoholic extracts of Thyme on enterohemorrhagic Escherichia coli

Background: Because of increasing resistance to current antibiotics, many attempts have been made by the researchers to find new compounds of plant derivatives as substitute for non-effective antibiotics. This research was performed to study the antibacterial properties of aquatic and alcoholic extracts of thyme on the clinical and standard strains of enterohemorrhagic Escherichia coli. Materi...

متن کامل

Regulation, secretion and activity of type III-secreted proteins of enterohaemorrhagic Escherichia coli O157.

Enterohaemorrhagic Escherichia coli (EHEC) O157:H7 causes gastrointestinal disease with the potential for life-threatening sequelae. Although Shiga-like toxins are responsible for much of the serious pathology in humans, the bacterium also possesses a type III protein secretion system that is responsible for intimate attachment to host intestinal mucosa. This sophisticated interaction requires ...

متن کامل

Regulators encoded in the Escherichia coli type III secretion system 2 gene cluster influence expression of genes within the locus for enterocyte effacement in enterohemorrhagic E. coli O157:H7.

Enterohemorrhagic Escherichia coli (EHEC) O157:H7 subverts host cells through a type III secretion system encoded by the locus for enterocyte effacement (LEE). Genome sequencing of this pathotype revealed the existence of a gene cluster encoding components of a second cryptic type III secretion system, E. coli type III secretion system 2 (ETT2). Recently, we showed that the ETT2 gene cluster is...

متن کامل

Metalloprotease NleC Suppresses Host NF-κB/Inflammatory Responses by Cleaving p65 and Interfering with the p65/RPS3 Interaction

Attaching/Effacing (A/E) pathogens including enteropathogenic Escherichia coli (EPEC), enterohemorrhagic E. coli (EHEC) and the rodent equivalent Citrobacter rodentium are important causative agents of foodborne diseases. Upon infection, a myriad of virulence proteins (effectors) encoded by A/E pathogens are injected through their conserved type III secretion systems (T3SS) into host cells wher...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 105  شماره 

صفحات  -

تاریخ انتشار 2017